Journal of Organometallic Chemistry, 169 (1979) 219-224 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

DARSTELLUNG UND STRUKTUR VON 2,2'-BIPYRIDIN(ETHYL)NICKEL-IMINOBORATEN

H. HOBERG *, V. GÖTZ und C. KRÜGER **

Max-Planck-Institut für Kohlenforschung, Postfach 011325, D-4330 Mülheim-Ruhr (B.R.D.) (Eingegangen den 25. September 1978)

Summary

Iminonickel(II) complexes have been prepared from the reaction of the iminoborate compounds with NiBr₂ or Ni(acac)₂ respectively, in the presence of 2,2'-bipyridine. The mechanism of formation and the crystal structure are discussed.

Zusammenfassung

Iminoborate bilden mit NiBr₂ bzw. Ni(acac)₂ (in Gegenwart von 2,2'-Bipyridin) Iminonickel(II)-Komplexe. Der Bildungsmechanismus sowie die Kristallstruktur werden diskutiert.

Einleitung

Kürzlich berichteten wir, dass Benzophenonimin, $(C_6H_5)_2C=NH$, an Nickel(0) sowohl "end-on" als auch "side-on" komplexiert werden kann [1]. In diesem Zusammenhang sollten Nickel-Verbindungen mit σ -gebundenen Imino-Resten vom Typ XNi—N=CHR bzw. Ni(N=CHR)₂ (I) (X = Halogen, R = Alkyl, Aryl) hergestellt werden. I könnte aus Nickelhalogeniden und Natrium-triethyliminoboraten [2], Na[$(C_2H_5)_3B$ —N=CHR'] (II), zugänglich sein, da aus Chloro-trimethylsilan mit II die entsprechenden Siliziumaldimine, $(CH_3)_3Si$ —N=CHR', erhalten werden [3].

Darstellung

Lässt man NiBr₂ mit II im Molverhältnis 1/1 bzw. 1/2 in Toluol oder Diethylether reagieren, so scheidet sich unter Rotfärbung der Lösung NaBr ab. Defi-

^{*} Korrespondenzautor.

^{**} Röntgenstrukturanalyse.

nierte nickelhaltige Produkte sind jedoch nicht zu isolieren. In Gegenwart von 2,2'-Bipyridin (bipy) erhält man dagegen nach Abtrennen des NaBr in guter Ausbeute eine weinrote, halogenfreie, diamagnetische Verbindung, deren Zusammensetzung nicht I, sondern III entspricht (Schema 1). Der Austausch Halogen \rightarrow Iminogruppe erfolgt somit nur teilweise und vor allem ohne Abspaltung von Triethylboran. Die Formulierung eines vierfach koordinierten Bor-Atoms in III wird durch das ¹¹B-NMR-Signal bei δ –0.3 ppm gestützt [4]. An das Ni-Atom in III sind zwei verschiedene σ -Substituenten gebunden, was bedeutet, dass II mit NiBr₂ nicht einsinnig reagiert *, d.h. sowohl das C₂H₅-Anion als auch die Imino-Triethylborat-Gruppe, [(C₂H₅)₃B-N=CHR]⁻, in II substituieren die Halogenatome nukleophil.

Es konnte gezeigt werden, dass der zu III führende Brom-Austausch am NiBr₂ schrittweise erfolgt. So reagiert das aus (bipy)(Cycloocta-1,5-dien)nickel(0) (IV) und C_2H_5Br (Molverhältnis 1/1) nach oxidativer Addition [5] entstehende V mit II ebenfalls zu III (Schema 1).

Der Beweis für die Struktur dieses neuartigen Verbindungstyps erfolgte durch eine Röntgenstrukturanalyse des in wohlausgebildeten Kristallen anfallenden IIIb, welches aus NiBr₂ oder Ni(acac)₂ mit IIb in guten Ausbeuten zugänglich ist.

 $(X = Br, acac; a: R = C_6H_5; b: R = t - C_4H_9)$

220

^{*} Das demnach neben NaBr noch zu erwartende (C2H5)2B-N=CHR wurde bisher nicht isoliert.

Röntgenstrukturanalyse

Kristalldaten sowie experimentelle Angaben zur Röntgenstrukturanalyse von III sind in Tabelle 1 wiedergegeben [6]. Die gefundenen Atomlageparameter

TABELLE 1					
KRISTALLDATEN VON III					
C ₂₃ H ₃₈ BN ₃ Ni	MolMasse = 426.07				
$a = 10.7587(6)^{a}$	V = 2394.27				
<i>b</i> = 17.2957(9)	Z = 4				
c = 12.8675(8)	Raumgruppe P21 /a				
$\beta = 89.461(3)^{\circ}$	d _{ber} = 1.18 g cm ⁻³				
Siemens Diffraktometer AED					
$\lambda(Cu-K_{\overline{lpha}}) = 1.54178$, Nickel-Filter					
3484 Reflexe gemessen, davon 1494 als unbeobachtet klassifiziert					
(<i>I</i> /σ(<i>I</i>) ≥ 2.0)					
$R = 0.062 (R_w = 0.069)$					

^a Alle Abstandsangaben sind in 10^{-10} m.

TABELLE 2

ATOMKOORDINATEN MIT STANDARDABWEICHUNGEN (X10 000)

Atom	x	У	2	
Ni	2567(1)	943(1)	1544(1)	
в	3237(7)		2857(6)	
N(1)	712(4)	816(2)	1689(4)	
N(2)	2155(5)	1151(2)	133(4)	
N(3)	2951(4)	546(2)	2864(4)	
C(1)	72(6)	666(3)	2570(5)	
C(2)	-1201(7)	646(3)	2585(5)	
C(3)		764(4)	1681(6)	
C(4)		911(4)	779(5)	
C(5)	106(6)	949(3)	810(4)	
C(6)	890(7)	1123(3)	-99(5)	
C(7)	445(7)	1236(4)		
C(8)	1262(10)	1403(4)	-1892(5)	1
C(9)	2520(8)	1401(4)	-1657(5)	
C(10)	2879(6)	1270(3)	-702(5)	
C(11)	3011(5)	886(3)	3726(4)	
C(12)	2815(6)	1734(3)	4016(5)	
C(13)	4102(6)	2067(4)	4237(5)	
C(14)	2061(6)	1739(4)	5044(5)	
C(15)	2175(6)	2201(3)	3208(5)	
C(16)	3434(8)	-648(4)	1639(6)	
C(17)	3450(8)	·—1557(4)	1466(6)	
C(18)	4436(8)	-579(4)	3564(6)	
C(19)	5642(6)	-137(4)	3399(6)	
C(20)	1925(8)	-831(4)	3331(6)	
C(21)	1535(7)	-709(4)	4411(6)	
C(22)	4337(5)	1214(3)	1360(5)	
C(23)	4614(6)	2062(4)	1106(5)	
C(18A)	4826(32)	-489(18)	2790(27)	
C(20A)	2796(29)	-828(18)	3943(26)	

wie auch wesentliche Bindungs-Abstände und -Winkel sind in Tabelle 2 und 3 zusammengefasst. Listen der thermischen Schwingungsparameter sowie der gemessenen wie auch berechneten Strukturfaktoren sind auf Wunsch von den Autoren erhältlich (C.K.).

Figur 1 zeigt die gefundene Molekülstruktur. Die Koordinations-Geometrie des Nickels ist quadratisch planar, wobei zwei Koordinationsstellen vom 2,2'-Bipyridin besetzt sind, je eine weitere von einer C_2H_5 -Gruppe sowie dem Imino-Stickstoff des Liganden R_3C —HC=N⁻. Letzterer ist hierbei so angeordnet, dass die Ebene des delokalisierten π -Systems senkrecht zur Koordinationsebene des Nickels steht. Die Ungleichheit der Liganden am Nickel kommt in unterschiedlichen Ni—N-Bindungsabständen zum 2,2'-Bipyridin zum Ausdruck; die Ni—N(2)-Bindung *trans*-Ni—N(3) ist deutlich gegenüber dem Erwartungswert (1.96) verkürzt. Als normal ist der Ni—C-Abstand zur π -gebundenen Ethylgruppe (1.973) anzusehen. Das Gerüst Ni, N(3), B, C(11), C(12) ist planar (±0.001) und zeigt für am Nickel durch σ -Bindungen fixierte Iminogruppen typische Abstände und

TABELLE 3

BINDUNGSABSTÄNDE (10^{-10} m) UND WINKEL (°)

Ni-N(1)	2.016(5)	B-C(16)	1.640(11)
Ni-N(2)	1.907(5)	B-C(18)	1.618(12)
Ni—N(3)	1.882(5)	BC(20)	1.710(12)
Ni-C(22)	1.973(6)	B—N(3)	1.655(8)
N(3)-C(11)	1.258(8)	C(16)-C(17)	1.590(11)
C(11)-C(12)	1.527(9)	C(18)-C(19)	1.520(11)
C(12)-C(13)	1.530(10)	C(20) - C(21)	1.464(12)
C(12)-C(14)	1.546(10)	C(22)—C(23)	1.532(10)
C(12)-C(15)	1.491(10)	C(5)—C(6)	1.469(9)
N(1)-C(1)	1.346(8)	N(2)—C(6)	1.397(10)
N(1)—C(5)	1.331(8)	N(2)-C(10)	1.338(9)
C(1)-C(2)	1.372(11)	Ċ(6)—C(7)	1.393(10)
C(2)C(3)	1.372(11)	C(7)—C(8)	1.370(11)
C(3)C(4)	1.371(11)	C(8)C(9)	1.391(14)
C(4)C(5)	1.404(10)	C(9)—C(10)	1.311(10)
N(1)-Ni-N(2)	82.5(2)	Ni—N(3)—B	113.3(4)
N(1)—Ni—N(3)	95.8(2)	Ni-N(3)-C(11)	129.7(4)
N(1)-Ni-C(22)	172.4(2)	BN(3)-C(11)	116.9(5)
N(2)—Ni—N(3)	169.4(2)	N(3)-B-C(16)	107.0(5)
N(2)-Ni-C(22)	94.3(3)	N(3)-B-C(20)	106.3(5)
N(3)—Ni—C(22)	88.6(2)	N(3)—B—C(18)	110.0(5)
B-C(16)-C(17)	113.7(6)	BC(18)C(19)	120.4(7)
BC(20)C(21)	120.2(7)	Ni-C(22)-C(23)	116.0(4)
N(3)-C(11)-C(12)	131.0(6)	C(11)-C(12)-C(13)	106.5(5)
C(11)-C(12)-C(15)	114.5(6)	C(13)-C(12)-C(14)	107.9(6)
C(15)-C(12)-C(14)	110.6(6)	C(4)-C(5)-N(1)	120.9(6)
C(4)—C(5)—C(6)	123.6(6)	N(2)-C(6)-C(5)	112.9(6)
C(6)—C(5)—N(1)	115.5(6)	C(7)-C(6)-C(5)	124.5(7)
NiN(1)C(1)	126.7(4)	Ni—N(2)—C(6)	115.7(4)
Ni—N(1)—C(5)	113.3(4)	Ni-N(2)-C(10)	131.0(5)
C(5)—N(1)—C(1)	119.9(5) ·	C(10)-N(2)-C(6)	113.2(6)
N(1)C(1)C(2)	121.3(6)	N(2)-C(6)-C(7)	122.5(6)
C(1)-C(2)-C(3)	119.6(7)	C(6)-C(7)-C(8)	119.6(8)
C(2)—C(3)—C(4)	119.5(7)	C(7)—C(8)—C(9)	117.2(7)
C(3)C(4)C(5)	118.8(7)	C(8)C(9)C(10)	120.0(7)
		C(9)-C(10)-N(2)	127.3(7)

Winkel [7], die durch Inanspruchnahme des freien Elektronenpaares an N(3) durch BEt₃ nur geringfügig gestört werden.

Experimentelles

Darstellung der 2,2'-Bipyridin-Iminoborat-Nickel-Komplexe (III)

(a) IIIa aus IIa und NiBr₂. Zu einer Suspension von 5.50 g (25.25 mmol) NiBr₂ in 400 ml Toluol wurde bei -20°C eine Lösung von 11.36 g (50.49 mmol) Natrium-triethyl-benzylideniminoborat [2] (IIa) und 3.94 g (50.49 mmol) 2,2'-Bipyridin in 250 ml Toluol gegeben und anschliessend auf Raumtemperatur erwärmt. Nach ca. 3 Tagen wird die nun weinrote Lösung vom ausgeschiedenen NaBr abgetrennt und auf —15°C gekühlt. Nach ca. 30 Tagen filtriert man die ausgeschiedenen Kristalle ab. Ausbeute: 4.1 g (9.19 mmol, 36%) (IIIa), Fp 132°C (Zers.), dunkelrot, diamagnetisch Analyse: Gef.: C, 67.20; H, 7.69; B, 2.51; N, 9.31; Ni, 13.11. C₂₅H₃₄N₃BNi (446.0) ber.: C, 67.32; H, 7.62; B, 2.42; N, 9.41; Ni, 13.15%. IR (KBr, cm⁻¹): Keine Bande im Bereich über 1600 cm⁻¹. Massenspektrum: m/e 98 (C_2H_5)₃B, 103 (C_6H_5CN), 156 (bipy). ¹H-NMR (C_4D_8O , 60 MHz, Lsgm. als Standard) δ (ppm): 9.5 bis 7.2 (versch. m; 13 H, bipy und C_6H_5), 8.4 (s; 1 H, N=C-H), 1.6 bis 0.2 (m; 22 H, (C_2H_5)₃B und C_2H_5 -Ni). ¹¹B-NMR (C₄H₈O, 32.1 MHz, Varian-XL-100 A-15, bei 34°C, Standard BF₃ · Et₂O, Signal zu höherer Frequenz als Standard) δ (ppm): -0.3 (s; HWB 180 Hz, N $-B(C_2H_5)_3$).

(b) IIIa aus (bipy)(COD)Ni (IV), C_2H_5Br und IIa. Zu einer Lösung von 5.27 g (16.31 mmol) (bipy)(COD)Ni (IV) [8] in 400 ml Toluol wurden bei $-20^{\circ}C$ 1.77 g (16.31 mmol) C_2H_5Br getropft. Nach ca. 8 h ergab die Titration einer Probe mit AgNO₃ einen Bromid-Gehalt von ca. 10.2 mmol (62%). Zur Reaktions-

lösung wurden dann innerhalb von 3 h 3.67 g (16.31 mmol) IIa in 150 ml Toluol gegeben, wobei allmählich eine Farbänderung von blauviolett nach weinrot eintrat. Nach ca. 4 Wochen bei -15° C wurden die ausgeschiedenen Kristalle abfiltriert. Ausbeute: 3.27 g (7.34 mmol, 45%) (IIIa).

(c) IIIb aus IIb und NiBr₂. Ausführung wie zur Darstellung von IIa beschrieben. Ansatz: 5.12 g (23.44 mmol) NiBr₂, 9.61 g (46.88 mmol) Natriumtriethylt-butylmethylideniminoborat (IIb) [2] und 3.65 g (23.44 mmol) bipy. Ausbeute: 3.29 g (7.73 mmol, 33%) (IIIb), Fp 112°C (Zers.), diamagnetisch. Analyse: Gef.: C, 65.20; H, 8.51; B, 2.37; N, 10.02; Ni, 13.60. C₂₃H₃₈N₃BNi (425.7) ber.: C, 64.88; H, 8.92; B, 2.53; N, 9.86; Ni, 13.78%. IR (KBr, cm⁻¹): keine Bande im Bereich über 1600 cm⁻¹. Massenspektrum: m/e 57 (C₄H₉), 98 (C₂H₅)₃B, 156 (bipy). ¹H-NMR (C₄D₈O, 60 MHz, Lsgm. als Standard) δ (ppm): 8.85 bis 7.1 (versch. m; 8 H, bipy und N=C–H), 1.56 (s; 9 H, t-C₄H₉), 1.45 bis 0.30 (m; 20 H, (C₂H₅)₃ und Ni–C₂H₅).

(d) IIIb aus IIb und Ni(acac)₂. Zu einer Suspension von 9.16 g (35.68 mmol) Ni(acac)₂ und 5.6 g (35.8 mmol) bipy in 300 ml Toluol wurde bei -78° C eine Lösung von 14.76 g (72.0 mmol) Natrium-triethyl-t-butylideniminoborat (IIb) in 100 ml Toluol getropft. Nach Aufwärmen auf Raumtemperatur erfolgt Farbänderung von grün nach weinrot. Nach 24 h wurde filtriert und danach auf -20° C gekühlt. Nach ca. 6 Tagen wurden die aus geschiedenen Kristalle abgetrennt. Ausbeute: 9.9 g (23.4 mmol, 65%) (IIIb).

Literatur

- 1 H. Hoberg, V. Götz, C. Krüger und Y.-H. Tsay, J. Organometal. Chem., 169 (1979) 209.
- 2 H. Hoberg und V. Götz, J. Organometal. Chem., 118 (1976) C3.
- 3 H. Hoberg, V. Götz und A. Milchereit, J. Organometal. Chem., 118 (1976) C6.
- 4 W.G. Henderson und E.F. Mooney, Ann. Rev. NMR Spectrosc., 2 (1969) 280.
- 5 G. Wilke, B. Bogdanović, P. Hardt, P. Heimbach, W. Keim, M. Kröner, W. Oberkirch, K. Tanaka, E. Steinrücke und D. Walter, Angew. Chem., 78 (1966) 157; Angew. Chem. int. Edit., 5 (1966) 151.
- 6 D.J. Brauer und C. Krüger, Inorg. Chem., 14 (1975) 3053.
- 7 I.W. Bassi, C. Benedicenti, M. Calcaterra, R. Intrito, G. Rucci und C. Santini, J. Organometal. Chem., 144 (1978) 225.
- 8 E. Dinjus, J. Gorski und D. Walther, Z. Anorg. Allg. Chem., 422 (1976) 78.